Abstract

This paper presents the results of an investigation of the prehistoric Palliser Rockslide, Rocky Mountains, Canada. Conventional aerial photograph interpretation and field mapping are complemented by terrestrial digital photogrammetry. These techniques allow quantification of the rockslide debris volume and reconstruction of the pre-slide topography. It has been estimated that the volume of rock involved in the most recent large rockslide is 8 Mm 3. Terrestrial digital photogrammetry is used in the characterization of the failure surface morphology, which is subdivided into four types of step-path geometry comprising both pre-existing discontinuities and intact rock fractures. Incorporation of these data into various rock slope stability numerical modeling methods highlights a complex failure mechanism, which includes sliding along a large scale curved failure surface, intact rock bridge fracturing and lateral confinement. A preliminary quantification of the contribution of intact rock bridges to the shear strength of the failure surface is presented in terms of the apparent cohesion, apparent tensile strength and cumulative length of the intact rock segments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.