Abstract
New methods are needed to reduce dynamic blebbing which inhibits cell attachment and survival during passaging of pluripotent stem cells. We tested the hypothesis that activation of the P2X7 receptor by extracellular ATP during passaging initiates dynamic blebbing. The P2X7 receptor was present in human embryonic stem cells (hESC), but not in differentiating cells. Extracellular ATP concentrations were 14× higher in medium during passaging. Addition of ATP to culture medium prolonged dynamic blebbing and inhibited attachment. Inhibition of P2X7 by specific drugs or by siRNA significantly reduced dynamic blebbing and improved cell attachment. When cells were incubated in calcium chelators (EGTA or BAPTA), blebbing decreased and attachment improved. Calcium influx was observed using Fura-4 when ATP was added to culture medium and inhibited in the presence of the P2X7 inhibitor. Over-expressing activated Rac in hESC reduced blebbing and promoted cell attachment, while a Rac inhibitor prolonged blebbing and reduced attachment. These data identify a pathway involving P2X7 that initiates and prolongs dynamic blebbing during hESC passaging. This pathway provides new insight into factors that increase dynamic blebbing and identifies new targets, such as P2X7, that can be used to improve the culture of cells with therapeutic potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.