Abstract

Recent exam of large samples of omega Cen giants shows that it shares with mono-metallic globular clusters the presence of the sodium versus oxygen anticorrelation, within each subset of stars with iron content in the range -1.9<~[Fe/H]<~-1.3. These findings suggest that, while the second generation formation history in omega Cen is more complex than that of mono-metallic clusters, it shares some key steps with those simpler cluster. In addition, the giants in the range -1.3<[Fe/H]<~-0.7 show a direct O--Na correlation, at moderately low O, but Na up to 20 times solar. These peculiar Na abundances are not shared by stars in other environments often assumed to undergo a similar chemical evolution, such as in the field of the Sagittarius dwarf galaxy. These O and Na abundances match well the yields of the massive asymptotic giant branch stars (AGB) in the same range of metallicity, suggesting that the stars at [Fe/H]>-1.3 in omega Cen are likely to have formed directly from the pure ejecta of massive AGBs of the same metallicities. This is possible if the massive AGBs of [Fe/H]>-1.3 in the progenitor system evolve when all the pristine gas surrounding the cluster has been exhausted by the previous star formation events, or the proto--cluster interaction with the Galaxy caused the loss of a significant fraction of its mass, or of its dark matter halo, and the supernova ejecta have been able to clear the gas out of the system. The absence of dilution in the metal richer populations lends further support to a scenario of the formation of second generation stars in cooling flows from massive AGB progenitors. We suggest that the entire formation of omega Cen took place in a few 10^8yr, and discuss the problem of a prompt formation of s--process elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.