Abstract

The Oxley machining theory which allows for the high strain-rate/high temperature flow stress and thermal properties of the work material is described. It is shown how the theory that was originally developed for the orthogonal process and later extended to oblique machining, can be used to predict cutting forces, temperatures and subsequently built-up edge formation conditions, tool life and cutting edge deformation conditions. It is also shown how the theory can be applied to obtain predictions in machining with restricted contact tools and in intermittent cutting processes, and to obtain work material properties using machining test results. Finally, some consideration is given to the future directions of machining research at UNSW. The Oxley Model can be used for predicting the performance parameters for different machining processes by taking into account the fundamentals of the chip formation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.