Abstract

PurposeThe purpose of this paper is to develop a goodness index based on Hamming distance and ordered weighted averaging distance (OWAD), which is useful to make decisions. These alternative measures enrich the results of diagnostic fuzzy models and facilitate the experts’ task in decision-making. An application to a set of firms to verify the results is also presented.Design/methodology/approachThe paper follows the basis of OWA operators to design a methodology to reduce the map of causes of business failure into monitoring key areas.FindingsThe present paper introduces two alternative measures to test the proposal of grouping. In the empirical application, the superiority of the minimum T-norm over other decision rules is verified. The ordered weighted averaging distance (OWAD) goodness index predicts a better adjustment over the index built using OWA and Hamming distance measures.Practical implicationsA useful mechanism to reduce the map of causes or diseases detected in key areas is added through this analysis. At the same time, these key areas can be disaggregated once some alert indicator is identified; this allows knowing the causes that require special attention. This application of OWA can encourage the development of suitable computer systems for monitoring the firm’s problems, alerting regarding failures and easing decision-making.Originality/valueA comparison of grouping causes into key areas through a goodness index based on Hamming distance and OWAD is proposed. These contributions enrich the Vigier and Terceño (2008) model and could be applied to any model of fuzzy diagnosis to test the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.