Abstract

The extent and thermal stratification of the region of convective overshoot underneath the convection zone of the sun are investigated. The phenomenon of convective overshoot in general is discussed, and some of the modal and model approaches to studying it are briefly reviewed. A detailed theoretical description of the motion of plumes in a stably stratified medium is given, leading to a 'derivation' of the plume equations from the hydrodynamic equations. Entrainment is discussed, and it is shown how the plume equations can be used to compute convective overshoot in the sun. The limitations of the plume model are addressed, arguing that a thin boundary layer must exist which separates convective and radiative regions. The results of numerical integrations of the plume equations, as applied to the region of convective overshoot underneath the solar convective zone, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.