Abstract

We unravel for the first time the origin of the poor carrier transport properties of BiVO4, a promising metal oxide photoanode for solar water splitting. Time-resolved microwave conductivity (TRMC) measurements reveal an (extrapolated) carrier mobility of ∼4 × 10–2 cm2 V–1 s–1 for undoped BiVO4 under ∼1 sun illumination conditions, which is unusually low for a photoanode material. The poor carrier mobility is compensated by an unexpectedly long carrier lifetime of 40 ns. This translates to a relatively long diffusion length of 70 nm, consistent with the high quantum efficiencies reported for BiVO4 photoanodes. Tungsten (W) doping is found to strongly decrease the carrier mobility by introducing intermediate-depth donor defects as carrier traps. At the same time, the increased carrier density improves the overall photoresponse, which confirms that bulk electronic conductivity is one of the main performance bottlenecks for BiVO4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.