Abstract

The traditional view of cancer emphasizes a genes-first process. Novel cancer traits arise by genetic mutations that spread to drive phenotypic change. However, recent data support a phenotypes-first process in which nonheritable cellular variability creates novel traits that later become heritably stabilized by genetic and epigenetic changes. Single-cell measurements reinforce the idea that phenotypes lead genotypes, showing how cancer evolution follows normal developmental plasticity and creates novel traits by recombining parts of different cellular developmental programs. In parallel, studies in evolutionary biology also support a phenotypes-first process driven by developmental plasticity and developmental recombination. These advances in cancer research and evolutionary biology mutually reinforce a revolution in our understanding of how cells and organisms evolve novel traits in response to environmental challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.