Abstract

Voluminous granodioritic magmatism is recorded in the East Kunlun, Northern Qinghai-Tibet Plateau. Here we present mineralogical, petrological, geochemical and Sr-Nd-Hf isotopic data and zircon U-Pb ages for the Naomuhun pluton and its numerous mafic microgranular enclaves (MMEs). Whole-rock geochemical data and regional geological studies indicate that this pluton consists of subduction-related high-K calc-alkaline metaluminous, I-type granodiorite. The MMEs have plagioclase xenocrysts and disequilibrium textures, such as oscillatory zoning and resorbed rims, indicating magma mixing. Compositions of plagioclase (An30-An49), amphibole (Mg# = 0.62 ~ 0.68), and biotite (Mg# = 0.52–0.56) of MMEs are similar to or very slightly different from equivalent minerals in the host granodiorites, suggesting nearly complete equilibration between the mafic-and felsic magmas. The zircon U-Pb age of the MMEs (263 ± 2 Ma) is identical, within analytical error, to that of the host granodiorites (261 ± 2 Ma). The MMEs have eHf(t) values of −6.83 to −3.15 (average = −4.68), whereas those of the granodiorites range from −9.00 to −3.20 (average −5.63), which is identical within analytical uncertainty. Combined with relatively homogeneous Sr-Nd isotopic compositions, we suggest the MMEs were derived from magma mixing, and their source is similar to an enriched mantle composition. The granodiorites have TDM2(Hf) model ages ranging from 1.49 to 1.86 Ga, consistent with the Nd model ages (TDM2), implying that the host magma was derived from Paleo- or Meso-proterozoic rocks, probably the Xiaomiao Group, which forms the basement of East Kunlun. We propose a model for magma formation and magma mixing in a subduction zone environment, in which subduction of an oceanic slab at ca. 260 Ma led to fluid metasomatism, inducing partial melting of an enriched lithospheric mantle to form the voluminous mafic magma. The mafic magma underplated the overlying lower crust, resulting in its partial melting to form felsic magma. The mafic magma then mixed with the felsic magma at lower crustal levels to form the MMEs by convective motion, or forceful injection into the host felsic magma. The MMEs and their host magma were then emplaced at a depth of ca. 12 km, where they crystallized at a temperature of ca. 700–770°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.