Abstract

This paper reports on thin film gas-diffusion barriers consisting of Al2O3/ZrO2 nanolaminates (NL) grown by low-temperature (80 °C) atomic layer deposition. We show that reliable barriers with water vapor transmission rates of 3.2×10−4 g/(m2 day), measured at 80 °C and 80% relative humidity, can be realized with very thin layers down to 40 nm. We determine that ZrO2 acts as anticorrosion element in our NL. Furthermore, we demonstrate by x-ray photoemission spectroscopy that an aluminate phase is formed at the interfaces between Al2O3 and ZrO2 sublayers, which additionally improves the gas-diffusion barrier due to a densification of the layer system. These Al2O3/ZrO2 NLs prepared at low temperatures hold considerable promises for application in organic electronics and beyond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.