Abstract
The quasi-steady-state conditions of the multi-atmospheric e-beam sustained Ar-Xe laser are investigated. It is observed that the duration of the stationary period depends on the e-beam current, discharge power deposition, and gas pressure. The laser efficiency can be as high as 8%. Beyond the stationary period the efficiency drops. The pulse energy with optimum efficiency depends strongly on the gas pressure. The maximum discharge efficiency of 5%-6% is at high pressure not sensitive to the input power. The best results are obtained for 4 bar with a discharge input power of 8 MW/l. The pulse duration with corresponding output energies is 12 /spl mu/s with 10 J/l and 16 /spl mu/s with 16 J/l for e-beam currents of 0.4 and 0.9 A/cm/sup 2/, respectively. An analysis of the quasi-steady-state conditions that include the effects of electron collision mixing and atomic quenching is presented. The effects of output power saturation by the fractional ionization and atomic collisions are in agreement with the observations. The analysis clarifies the optimum performance conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.