Abstract
The DRAM based on the dual-gate tunneling FET (DGTFET) has the advantages of capacitor-less structure and high retention time. In this paper, the optimization of spacer engineering for DGTFET DRAM is systematically investigated by Silvaco-Atlas tool to further improve its performance, including the reduction of reading “0” current and extension of retention time. The simulation results show that spacers at the source and drain sides should apply the low-k and high-k dielectrics, respectively, which can enhance the reading “1” current and reduce reading “0” current. Applying this optimized spacer engineering, the DGTFET DRAM obtains the optimum performance-extremely low reading “0” current (10−14A/μm) and large retention time (10s), which decreases its static power consumption and dynamic refresh rate. And the low reading “0” current also enhances its current ratio (107) of reading “1” to reading “0”. Furthermore, the analysis about scalability reveals its inherent shortcoming, which offers the further investigation direction for DGTFET DRAM.
Highlights
With the shrink of device geometry, the 1 transistor (1T)–1 capacitor (1C) dynamic random access memory (DRAM) has encountered difficulty in scaling down, because it is difficult for capacitor to reduce its size [1,2,3]
Operating Mechanism In dual-gate tunneling field-effect transistor (TFET) (DGTFET) DRAM, the writing and reading operations are controlled by band-to-band tunneling (BTBT) at the drain and source tunneling junctions, respectively
In this paper, the optimization of spacer engineering for DGTFET DRAM is studied by Silvaco-Atlas tool
Summary
With the shrink of device geometry, the 1 transistor (1T)–1 capacitor (1C) dynamic random access memory (DRAM) has encountered difficulty in scaling down, because it is difficult for capacitor to reduce its size [1,2,3]. It is reported that TFET DRAM has the low reading “0” current and high retention time (RT). Operating Mechanism In DGTFET DRAM, the writing and reading operations are controlled by BTBT at the drain and source tunneling junctions, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.