Abstract

We explore the stability of equilibrium solution(s) of a simple model of microvascular blood flow in a two-node network. The model takes the form of convection equations for red blood cell concentration, and contains two important rheological effects—the Fahraeus–Lindqvist effect, which governs viscosity of blood flow in a single vessel, and the plasma skimming effect, which describes the separation of red blood cells at diverging nodes. We show that stability is governed by a linear system of integral equations, and we study the roots of the associated characteristic equation in detail. We demonstrate using a combination of analytical and numerical techniques that it is the relative strength of the Fahraeus–Lindqvist effect and the plasma skimming effect which determines the existence of a set of network parameter values which lead to a Hopf bifurcation of the equilibrium solution. We confirm these predictions with direct numerical simulation and suggest several areas for future research and application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.