Abstract

Sudden cardiac death results from arrhythmias commonly caused by channelopathies and cardiomyopathies, often due to several genetic factors. An emerging concept is that these disease states may in fact overlap, with variants in traditionally classified ‘cardiomyopathy genes’ resulting in ‘channelopathies phenotypes’. Another important concept is the influence of both genetic and non-genetic factors in disease expression, leading to the utilization of systems biology approaches, such as genomics/epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, and glycomics, to understand the disease severity and progression and to determine the prognosis and the best course of treatment. In fact, our group has discovered significant differences in metabolites, proteins, and lipids between controls and Brugada syndrome patients. Omics approaches are useful in overcoming the dogma that both channelopathies and cardiomyopathies exist as Mendelian disorders (caused by a mutation in a single gene). This shift in understanding could lead to new diagnostic and therapeutic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.