Abstract

Abstract We implement the unified transform method of Fokas as a numerical method to solve linear evolution partial differential equations on the half-line. The method computes the solution at any $x$ and $t$ without spatial discretization or time stepping. With the help of contour deformations and oscillatory integration techniques, the method’s complexity does not increase for large $x,t$ and the method is more accurate as $x,t$ increase (absolute errors are smaller, relative errors are bounded). Our goal is to make no assumptions on the functional form of the initial or boundary functions beyond some decay and smoothness, while maintaining high accuracy in a large region of the $(x,t)$ plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.