Abstract

An elementary consequence of the Hahn-Banach theorem is that every Banach space Y is ω*-dense in its second dual Y**, so that every element y ∈ Y** is the w*-limit of a net {ya}α ∈ Λ from Y. There is, of course, a great deal of choice in the selection of such a net, and so one may impose extra conditions on the net related to some special property of the limit point, and then ask for existence. The object of this paper is to present such a result in the context of a unital Banach algebra and its second dual , and then to give two applications to Banach algebra theory. The theorem to be proved is this: if the numerical range W(a) of an element in has non-empty interior then a is the ω*-limit of a net {aa}α ∈ Λ from whose numerical ranges are contained in W(a), while if W(a) has empty interior then the numerical ranges W(aα) are contained in a shrinking set of neighbourhoods of W(a).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.