Abstract

In shipyards, hull curved plate formation is an important stage with respect to productivity and accuracy control of curved plates. Because the power and its distribution of induction heat source are easier to control and reproduce, induction heating is expected to be applied in the line heating process. This paper studies the moveable induction heating process of steel plate and develops a numerical model of electromagneticthermal coupling analysis and the numerical results consistent with the experimental results. The numerical model is used to analyze the temperature changing rules and the influences on plate temperature field of heating speed of moveable induction heating of steel plate, and the following conclusions are drawn. First, the process of moveable induction heating of steel plate can be divided into three phases of initial state, quasi-steady state, and end state. The temperature difference between the top and bottom surfaces of the steel plate at the initial state is the biggest; it remains unchanged at the quasi-steady state and it is the smallest at the end state. Second, obvious end effect occurs when the edges of the steel plate are heated by the inductor, which causes a decrease in temperature difference between the top and bottom surfaces of the steel plate that is unfavorable for formation of pillow shape plates. Third, with the increase of heating speed, the temperature difference between the top and bottom surfaces of the steel plate increases gradually.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.