Abstract

We determine upper and lower bounds for the number of maximum matchings (i.e., matchings of maximum cardinality) m(T) of a tree T of given order. While the trees that attain the lower bound are easily characterised, the trees with the largest number of maximum matchings show a very subtle structure. We give a complete characterisation of these trees and derive that the number of maximum matchings in a tree of order n is at most O(1.391664n) (the precise constant being an algebraic number of degree 14). As a corollary, we improve on a recent result by Górska and Skupień on the number of maximal matchings (maximal with respect to set inclusion).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.