Abstract

PurposeTreatment of anterior glenoid bone loss in patients with recurrent anterior shoulder instability is a challenge. The subscapular sling method with quadriceps tendon bone (QTB) graft is a modification of the subscapular sling with a semitendinosus (ST) graft. The aim of the study was to test the biomechanical stability of the QTB sling procedure in human shoulder cadavers with severe anterior glenoid bone loss.MethodsFourteen cadaveric shoulders were tested with a force–moment-guided robot in three conditions: physiologically intact, anterior glenoid bone resection, and the subscapular sling procedure with a QTB graft. Joint stability was measured in anterior, anterior inferior and inferior directions in four glenohumeral joint positions: 0° and 60° of glenohumeral abduction, with each at 0° and 60° of external rotation. Maximum external rotation was measured at 0° and 60° glenohumeral abduction. Computer tomography scans were obtained preoperatively to plan the glenoid bone resection, as well as postoperatively to calculate the proportion of the glenoid bone actually resected.ResultsSignificantly decreased translations were observed in the shoulders with the QTB sling compared to the intact joint and the glenoid bone loss model. No significant differences in maximum external rotation were observed between the three different conditions.ConclusionThis biomechanical study revealed a significant stabilizing effect of the arthroscopic subscapular QTB graft sling procedure in human shoulder cadavers without compromising external rotation. Clinical trials may reveal the usefulness of this experimental method.

Highlights

  • Patients suffering from an anterior shoulder dislocation are restricted in their activities of daily living

  • No significant differences in external rotation were found between the three different conditions (Table 2)

  • The arthroscopic subscapular sling procedure stabilizes the shoulder by means of a quadriceps tendon bone (QTB) graft placed on the glenoid and around the subscapular tendon (Fig. 7)

Read more

Summary

Introduction

Patients suffering from an anterior shoulder dislocation are restricted in their activities of daily living. The existing methods for surgical stabilization of a shoulder joint with glenoid bone loss render good results, but have complications and recurrent dislocations [3, 4, 30]. The interaction between the conjoined tendon and the subscapular tendon in the Latarjet procedure results in a sling-type structure. The importance of this sling phenomenon has been well described in cadaveric studies [11, 40, 43]. As a consequence of the previous convincing biomechanical investigations of this new method [37], we decided to further explore the potential of an arthroscopic subscapular sling procedure which utilizes a quadriceps tendon bone (QTB) graft. The aim of this study was to biomechanically evaluate this new stabilizing technique on human cadaveric shoulders in a glenoid bone loss model

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.