Abstract

Under certain scaling the nonlinear Schrödinger equation with random dispersion converges to the nonlinear Schrödinger equation with white noise dispersion. The aim of this work is to prove that this latter equation is globally well posed in L 2 or H 1 . The main ingredient is the generalization of the classical Strichartz estimates. Additionally, we justify rigorously the formal limit described above.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.