Abstract

Honeywell research and development projects directed at improvements in the design, building, and testing of RLG (ring laser gyro) strapdown systems are reviewed. Some of the performance standards being set with current hardware are discussed, as are a number of the known error sources existing in these systems along with candidate solutions, the analysis and test results upon which precision navigation performance projections are based, and plans to demonstrate the feasibility of a precision pure strapdown RLG system. Based upon current performance, reasonable projections and analysis, and laboratory test data, it is anticipated that strapdown RLG systems can deliver performance consistent with the precision requirements of SNU 84-3 (0.2 nm/h after a precision-extended time-alignment) while retaining the major advantages that the pure strapdown mechanization offers. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.