Abstract

The transparent and refractive properties of the ocular lens are dependent on its precise cellular structure, supported by the regulation of lens cellular processes of proliferation and differentiation that are essential throughout life. The ERK/MAPK-signalling pathway plays a crucial role in regulating lens cell proliferation and differentiation, and in turn is regulated by inhibitory molecules including the Spred family of proteins to modulate and attenuate the impact of growth factor stimulation. Given Spreds are strongly and distinctly expressed in lens, along with their established inhibitory role in a range of different tissues, we investigated the role these antagonists play in regulating lens cell proliferation and differentiation, and their contribution to lens structure and growth. Using established mice lines deficient for either or both Spred 1 and Spred 2, we demonstrate their role in regulating lens development by negatively regulating ERK1/2 activity. Mice deficient for both Spred 1 and Spred 2 have impaired lens and eye development, displaying irregular lens epithelial and fibre cell activity as a result of increased levels of phosphorylated ERK1/2. While Spred 1 and Spred 2 do not appear to be necessary for induction and early stages of lens morphogenesis (prior to E11.5), nor for the formation of the primary fibre cells, they are required for the continuous embryonic growth and differentiation of the lens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.