Abstract

Resistance to tobacco mosaic virus (TMV) is controlled by the single dominant gene N in Nicotiana glutinosa L. This gene has been transferred to cultivated tobacco (N. tabacum L.) by interspecific hybridization and backcrossing, but has historically been associated with reduced yields and/or quality in flue-cured tobacco breeding materials. Past researchers have suggested the role of pleiotropy and/or linkage drag effects in this unfavorable relationship. Introduction of the cloned N gene into a TMV-susceptible tobacco genotype (cultivar 'K326') via plant transformation permitted investigation of the relative importance of these possibilities. On average, yield and cash return ($ ha(-1)) of 14 transgenic NN lines of K326 were significantly higher relative to an isoline of K326 carrying N introduced via interspecific hybridization and backcrossing. The negative effects of tissue culture-induced genetic variation confounded comparisons with the TMV-susceptible cultivar, K326, however. Backcrossing the original transgenic lines to non-tissue cultured K326 removed many of these unfavorable effects, and significantly improved their performance for yield and cash return. Comparisons of the 14 corresponding transgenic NN backcross-derived lines with K326 indicated that linkage drag is the main factor contributing to reduced yields in TMV-resistant flue-cured tobacco germplasm. On average, these transgenic lines outyielded the conventionally-developed TMV-resistant K326 isoline by 427 kg ha(-1) (P < 0.05) and generated $1,365 ha(-1) more (P < 0.05). Although transgenic tobacco cultivars are currently not commercially acceptable, breeding strategies designed to reduce the amount of N. glutinosa chromatin linked to N may increase the likelihood of developing high-yielding TMV-resistant flue-cured tobacco cultivars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.