Abstract

Introduction: While it is well established that the brain produces hypothalamic hormones and neuropeptides that influence skeletal metabolism, the impact of traumatic brain injury (TBI) on bone is unknown. Based on the recognition from clinical studies that there is an association between TBI and long-term hypothalamic pituitary dysfunction, it was hypothesized that TBI exerts a negative impact on skeletal growth and maintenance.Methods: To test the hypothesis, this study employed a repetitive weight drop model for TBI. Four impacts were applied for four consecutive days on 5-week old female C57BL/6 J mice. Bone measurements were taken 2 weeks after the first impact.Results: Bone mineral content (BMC), bone area (B area) and bone mineral density (BMD) in the total body were reduced by 14.5%, 9.8% and 5.2%, respectively, in the impacted vs. control mice. There was a 17.1% reduction in total volumetric BMD (vBMD) and a 4.0% reduction in material vBMD in cortical bone. In trabecular bone, there was a 44.0% reduction in BV/TV. Although there was no change in the cross-sectional bone size, the tibial growth plate and the tibia itself were shortened.Conclusion: The repetitive animal TBI model produced an immediate, strong negative impact on bone mass acquisition in young mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.