Abstract
The active catalyst for the dehydrogenation of ethylbenzene is generated from a precursor material consisting of hematite and potassium hydroxide (with additional promotors) during the initial phase of catalyst operation at 873 K in a steam atmosphere. The active phase is a thin layer of KFeO 2 supported on a solid solution of K 2Fe 22O 34 in Fe 3O 4. The ternary K 2Fe 22O 34 phase acts as storage medium from which the active surface is continuously supplied with a near-monolayer coverage of potassium ions in an environment of Fe 3+ ions. The catalyst undergoes a continuous solid-state transformation caused by the migration of potassium ions. This requires a certain degree of imperfection in the matrix lattice which originates from the catalyst preparation and from the addition of promotors which act on the iron oxide lattice rather than on the surface chemistry. The identity of the active phase with KFeO 2 was confirmed by independent synthesis of this phase and comparison of its catalytic activity with that of the technical catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.