Abstract

Previous studies have indicated that recombination near the third chromosome centromere is associated with negative chromosome interference, a phenomenon for which Green (1975) and Sinclair (1975) suggested gene conversion as a possible mechanism. In this report, we demonstrate that negative chromosome interference is still observed when deficiencies or translocation breakpoints are scored as the middle markers in recombination experiments and the rate of recombination is increased by interchromosomal effect. We argue that these chromosomal rearrangement breakpoints are not subject to conversion. Since neither successive premeiotic and meiotic exchanges, nor negative chromatid interference, can by themselves account for the negative chromosome interference, we conclude that a greater than expected frequency of multiple exchanges actually occurs. We further suggest that negative chromosome interference may be characteristic of all chromosomal regions normally showing very little exchange in relation to physical length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.