Abstract

Flavivirus infections by Zika and dengue virus impose a significant global healthcare threat with no US Food and Drug Administration (FDA)-approved vaccination or specific antiviral treatment available. Here, we present the discovery of an anti-flaviviral natural product named cavinafungin. Cavinafungin is a potent and selectively active compound against Zika and all four dengue virus serotypes. Unbiased, genome-wide genomic profiling in human cells using a novel CRISPR/Cas9 protocol identified the endoplasmic-reticulum-localized signal peptidase as the efficacy target of cavinafungin. Orthogonal profiling in S.cerevisiae followed by the selection of resistant mutants pinpointed the catalytic subunit of the signal peptidase SEC11 as the evolutionary conserved target. Biochemical analysis confirmed a rapid block of signal sequence cleavage of both host and viral proteins by cavinafungin. This study provides an effective compound against the eukaryotic signal peptidase and independent confirmation of the recently identified critical role of the signal peptidase in the replicative cycle of flaviviruses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.