Abstract

Regulation of the activity of vacuolar ATPase (V-ATPase) is a well known, yet poorly understood phenomenon, which might underlie the contribution of V-ATPases in various cellular signaling processes1. In yeast, V-ATPase is regulated by glucose and contributes to activation of cAMP-dependent protein kinase A (PKA). We have recently shown that, in vivo, glucose regulates V-ATPase through cytosolic pH, suggesting that V-ATPase contains a pH sensitive subunit, which regulates assembly of the holo-complex2. Here, we present the purification and biochemical characterization of the N-terminal domain of subunit 'a', Vph1N, which has been suggested to act as a pH sensor in mammalian cells3. Interestingly, our studies demonstrate pH-dependent oligomerization of this domain in vivo and in vitro. Moreover, we identify a membrane proximal region that is required for the pH-dependent oligomerization, and suggest a speculative model for the regulation of the V-ATPase holo-complex by pH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.