Abstract

MCM1 performs several functions necessary for its role in regulating cell type-specific gene expression in the yeast Saccharomyces cerevisiae: DNA binding, transcription activation, and interaction with coregulatory proteins such as alpha 1. We analyzed a set of MCM1 deletion derivatives using in vivo reporter gene assays and in vitro DNA-binding studies to determine which regions of MCM1 are important for its various activities. We also analyzed a set of LexA-MCM1 hybrids to examine the ability of different segments of MCM1 to activate transcription independent of MCM1's DNA-binding function. The first third of MCM1 [MCM1(1-96)], which includes an 80-residue segment homologous to the mammalian serum response factor, was sufficient for high-affinity DNA binding, for activation of reporter gene expression, and for interaction with alpha 1 in vitro and in vivo. However, the ability of MCM1(1-96) to activate transcription and to interact with alpha 1 was somewhat reduced compared with wild-type MCM1 [MCM1(1-286)]. Optimal interaction with alpha 1 required residues 99 to 117, in which 18 of 19 amino acids are acidic in character. Optimal transcription activation required a segment from residues 188 to 286, in which 50% of the amino acids are glutamine. Deletion of this segment from MCM1 reduced expression of reporter genes by about twofold. Moreover, LexA-MCM1 hybrids containing this segment were able to activate expression of reporter genes that rely on LexA binding sites as potential upstream activation sequences. Thus, glutamine-rich regions may contribute to the activation function of yeast transcription activators, as has been suggested for glutamine-rich mammalian proteins such as Sp1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.