Abstract
We study the representation theory of the [Formula: see text] super Heisenberg–Virasoro vertex algebra at level zero, which extends the previous work on the Heisenberg–Virasoro vertex algebra [D. Adamović and G. Radobolja, Free field realization of the twisted Heisenberg–Virasoro algebra at level zero and its applications, J. Pure Appl. Algebra 219(10) (2015) 4322–4342; D. Adamović and G. Radobolja, Self-dual and logarithmic representations of the twisted Heisenberg–Virasoro algebra at level zero, Commun. Contemp. Math. 21(2) (2019) 1850008; Y. Billig, Representations of the twisted Heisenberg–Virasoro algebra at level zero, Can. Math. Bull. 46(4) (2003) 529–537] to the super case. We calculated all characters of irreducible highest weight representations by investigating certain Fock space representations. Quite surprisingly, we found that the maximal submodules of certain Verma modules are generated by subsingular vectors. The formulas for singular and subsingular vectors are obtained using screening operators appearing in a study of certain logarithmic vertex algebras [D. Adamović and A. Milas, On W-algebras associated to (2, [Formula: see text]) minimal models and their representations, Int. Math. Res. Notices 2010(20) (2010) 3896–3934].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.