Abstract

The estimation of mutual information between graphs has been an elusive problem until the formulation of graph matching in terms of manifold alignment. Then, graphs are mapped to multi-dimensional sets of points through structure preserving embeddings. Point-wise alignment algorithms can be exploited in this context to re-cast graph matching in terms of point matching. Methods based on bypass entropy estimation must be deployed to render the estimation of mutual information computationally tractable. In this paper the novel contribution is to show how manifold alignment can be combined with copula-based entropy estimators to efficiently estimate the mutual information between graphs. We compare the empirical copula with an Archimedean copula (the independent one) in terms of retrieval/recall after graph comparison. Our experiments show that mutual information built in both choices improves significantly state-of-the art divergences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.