Abstract

AbstractThe notion of BSE algebras was introduced and first studied by Takahasi and Hatori and later studied by Kaniuth and Ülger. This notion depends strongly on the multiplier algebra $M( \mathcal{A} )$ of a commutative Banach algebra $ \mathcal{A} $. In this paper we first present a characterisation of the multiplier algebra of the direct sum of two commutative semisimple Banach algebras. Then as an application we show that $ \mathcal{A} \oplus \mathcal{B} $ is a BSE algebra if and only if $ \mathcal{A} $ and $ \mathcal{B} $ are BSE. We also prove that if the algebra $ \mathcal{A} \hspace{0.167em} {\mathop{\times }\nolimits}_{\theta } \hspace{0.167em} \mathcal{B} $ with $\theta $-Lau product is a BSE algebra and $ \mathcal{B} $ is unital then $ \mathcal{B} $ is a BSE algebra. We present some examples which show that the BSE property of $ \mathcal{A} \hspace{0.167em} {\mathop{\times }\nolimits}_{\theta } \hspace{0.167em} \mathcal{B} $ does not imply the BSE property of $ \mathcal{A} $, even in the case where $ \mathcal{B} $ is unital.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.