Abstract

In this paper, we introduce the multiple Traveling Salesman Problem with Drone Stations (mTSP-DS), which is an extension to the classical multiple Traveling Salesman Problem (mTSP). In the mTSP-DS, we have a depot, a set of trucks, and some packet stations that host a given number of autonomous vehicles (drones or robots). The trucks start their mission from the depot and can supply some packet stations, which can then launch and operate drones/robots to serve customers. The goal is to serve all customers either by truck or by drones/robots while minimizing the makespan. We formulate the mTSP-DS as a mixed integer linear programming (MILP) model to solve small instances. To address larger instances, we first introduce two variants of a decomposition-based matheuristic. Afterwards, we suggest a third approach that is based on populating a solution pool with several restarts of an iterated local search metaheuristic, which is followed by determining the best combination of tours using a set-partitioning model. To verify the performance of our algorithms, we conducted extensive computational experiments. According to the numerical results, we observe that the use of drone stations leads to considerable savings in delivery time compared to traditional mTSP solutions. Furthermore, we investigated the energy consumption of trucks and drones. Indeed, depending on the energy consumption coefficients of trucks and drones as well as on the distance covered by drones, the mTSP-DS can also achieve energy savings in comparison to mTSP solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.