Abstract

The behavior of a two-body self-propelling locomotion system in a resistive environment is studied. The motion of the system is excited and sustained by means of a periodic change in the distance between the bodies. A complete analysis of the motion of the system is performed for the case where the resistance forces applied by the environment to the bodies of the system are represented by linear functions of the velocities of these bodies relative to the environment. For the case where the resistance forces are nonlinear functions of the velocities of the bodies, a model based on the averaged equation of motion is used. This model assumes the forces of friction acting in the system to be small in comparison with the excitation force. The motion of the system along a horizontal straight line in an isotropic dry friction environment is investigated in detail for two particular types of excitation modes. The calculated results are compared with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.