Abstract

Investigations on the spatial patterns of COVID-19 spreading indicate the possibility of the virus transmission by moving infected people in an urban area. Hospitals are the most susceptible locations due to the COVID-19 contaminations in metropolises. This paper aims to find the riskiest places surrounding the hospitals using an MLP-ANN. The main contribution is discovering the influence zone of COVID-19 treatment hospitals and the main spatial factors around them that increase the prevalence of COVID-19. The innovation of this paper is to find the most relevant spatial factors regarding the distance from central hospitals modeling the risk level of the study area. Therefore, eight hospitals with two service areas for each of them are computed with [0–500] and [500–1000] meters distance. Besides, five spatial factors have been considered, consist of the location of patients’ financial transactions, the distance of streets from hospitals, the distance of highways from hospitals, the distance of the non-residential land use from the hospitals, and the hospital patient number. The implementation results revealed a meaningful relation between the distance from the hospitals and patient density. The RMSE and R measures are 0.00734 and 0.94635 for [0–500 m] while these quantities are 0.054088 and 0.902725 for [500–1000 m] respectively. These values indicate the role of distance to central hospitals for COVID-19 treatment. Moreover, a sensitivity analysis demonstrated that the number of patients’ transactions and the distance of the non-residential land use from the hospitals are two dominant factors for virus propagation. The results help urban managers to begin preventative strategies to decrease the community incidence rate in high-risk places.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.