Abstract

The introns of three genes ( oxi3, cob and 21S) from the mitochondrial (mt) genome of Saccharomyces cerevisiae contain closed reading frames (CRFs). In the present work, we have analyzed these sequences in their oligodeoxyribonucleotide (oligo; isostich) patterns. We have shown that the relative amounts of di- to hexanucleotides, when compared to random sequences having the same sizes and compositions, exhibit the same deviations as the intergenic noncoding sequences of the mt genome (except for the CRFs from 21S intron). In contrast, intronic open reading frames (ORFs) showed oligo patterns which were generally quite distinct from those of CRFs, although some similarities could be detected in some cases (especially for aI5α). The mt introns of yeast, therefore, are endowed with a mosaic structure, in which CRFs derive from mt intergenic sequences, whereas ORFs have a different origin (indicated as exogenous by other evidences) yet show, in some cases, the effects of ‘sequence assimilation’ with CRFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.