Abstract

The evidence that genes on chromosome 11 are involved in Wilms tumor development is convincing; however, it is also evident that the mechanisms of tumorigenesis are more complex than the two-mutation model originally proposed. Potentially several genetic loci participate in Wilms tumor development. This should not be too surprising considering the complexity of pathways regulating growth and differentiation in nephrogenesis. It is possible that these various genes act at different points in the differentiation pathway and disruption of their normal function contributes to tumorigenesis. In fact, these loci may interact with one another in tumor formation. Certain types of genetic alterations may be the rate-limiting steps, but other changes may also contribute or be necessary for tumor development. Homozygous inactivation of specific genes, combinations of mutated alleles, and relaxation of genetic imprinting, or even interactions between different mutated alleles may all be part of the process for individual tumors. It has been found that some patients with the WAGR syndrome who are hemizygous for WT1 at 11p13 have in addition loss of heterozygosity within 11p15, and a sporadic tumor has been shown to have a WT1 mutation and loss of heterozygosity at loci at both 11p15 and 11p13 (59,85). These observations suggest the potential for interaction among the various Wilms tumor loci. Not only are there likely to be a number of different genetic loci linked to Wilms tumor development, but the mechanisms underlying altered gene function may be more variable than originally believed. It is probably not correct to think of Wilms tumor as a homogeneous entity. Mutations at different loci or various combinations of genetic lesions could well be responsible for the different categories of Wilms tumors. This apparent genetic complexity of Wilms tumor development is a concept that can very likely be applied to many other types of neoplasms. A complete understanding of Wilms tumorigenesis awaits identification of all members of the Wilms tumor gene family and the functional significance of their alterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.