Abstract
Following an earlier paper on the differential-geometric structure of the moduli space of special Lagrangian submanifolds in a Calabi-Yau manifold, we follow an analogous approach for compact complex Lagrangian submanifolds of a (K\ahlerian) complex symplectic manifold. The natural geometric structure on the moduli space is a special K\ahler metric, but we offer a different point of view on the local differential geometry of these, based on the structure of a submanifold of $V\times V$ (where $V$ is a symplectic vector space) which is Lagrangian with respect to two constant symplectic forms. As an application, we show using this point of view how the hyperk\ahler metric of Cecotti, Ferrara and Girardello associated to a special K\ahler structure fits into the Legendre transform construction of Lindstr\om and Ro\v cek.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.