Abstract

A computer model of oxidative phosphorylation was developed in isolated muscle mitochondria [Korzeniewski and Mazat: Biochem J 319: 143-148, 1996] and in intact skeletal muscle [Korzeniewski and Zoladz: Biophys Chem 92: 17-34, 2001]. Within this model the dependence on different metabolite concentrations of the rate of each enzymatic reaction, process and flux is described by an appropriate kinetic equation. The changes of metabolite concentrations over time are described by a set of ordinary differential equations. The model has been very extensively tested by a comparison of computer simulations with a broad set of experimental results concerning various kinetic properties of the oxidative phosphorylation system. Next the model was used for theoretical studies on the regulation of oxidative phosphorylation in intact muscle cells. The model decidedly supports the so-called parallel-activation mechanism or each-step-activation mechanism of adjusting the rate of ATP supply to the current energy demand [Korzeniewski: Biochem J 330: 1189-1195, 1998; Korzeniewski: Biochem J 375: 799-804, 2003]. Because of this mechanism, not only ATP usage, but also the substrate dehydrogenation system and all oxidative phosphorylation complexes (complex I, complex III, complex IV, ATP synthase, ATP/ADP carrier, phosphate carrier) are directly (and not by changes in metabolite concentrations) activated by some intracellular factor(s) related to muscle contraction, probably by calcium ions, during the transition from rest to work. This mechanism is able to account for several kinetic properties of oxidative phosphorylation that cannot be explained by other mechanisms postulated in the literature. Thus the discussed kinetic model of oxidative phosphorylation has appeared to be a very useful research tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.