Abstract

Monomerization and trimerization of photosystem I (PSI) in cyanobacteria are reversible to response to light switched off and on, which leads to "energy spillover" to regulate excitation of the two photosystems in balance. Considering that PSI is a trans-membrane protein embedded in thylakoid membranes, the monomerization or trimerization must involve a movement of PSI in the membranes. In this work, the mobility of PSI was demonstrated by dependence of the monomerization and trimerization on temperature for intact Spirulina platensis cells undergoing a light-to-dark or a dark-to-light transition. Based on the characteristic absorbance of monomers and trimmers, it confirms that both monomerization and trimerization are temperature-sensitive. The relative populations of the monomers and trimmers are invariable above the phase transition temperature (T (PT)) while directly proportional to temperature below T (PT). On the other hand, the rate to reach the equilibrium population is proportional to temperature above T (PT) but invariable below T (PT). The PSI mobility and the temperature-dependent population are contrary to those of plastoquinone (PQ) molecules because PSI is a trans-membrane protein while PQ molecules are small diffusive electron carriers in thylakoid membranes as well as their distinctive sizes and environments. The less monomerization of PSI but the invariable time constant at lower temperature below T (PT) may be due to that accumulation of the reduced PQ molecules results in decrease of the stromal-side H(+) concentration which is a driving force of PSI monomerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.