Abstract

Dopamine plays numerous physiological roles in plants. We explored its role in the regulation of growth, nutrient absorption, and response to nitrogen (N) deficiency in Malus hupehensis Rehd. Under low N condition, plant growth slowed, and the net photosynthetic rates, chlorophyll contents, and maximal quantum yield of PSII (Fv/Fm) decreased significantly. However, the application of 100 μmol L−1 exogenous dopamine significantly reduced the inhibition of low N stress on plant growth. In addition to modifying root system architecture under low N supply, exogenous dopamine also changed the uptake, transport, and distribution of N, P, and K. Furthermore, exogenous dopamine enhances the tolerance to low nitrogen stress by increasing the activity of enzymes (nitrate reductase, nitrite reductase, glutamic acid synthase and glutamine synthetase) involved in N metabolism. We also found that exogenous dopamine promoted the expression of ethylene signaling genes (ERF1, ERF2, EIL1, ERS2, ETR1, and EIN4) under low N stress. Therefore, we hypothesized that ethylene might be involved in dopamine response to low N stress in M. hupehensis. Our results suggest that exogenous dopamine can mitigate low N stress by regulating the absorption of mineral nutrients, possibly through the regulation of the ethylene signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.