Abstract
This case report describes false shortening of activated partial thromboplastin time (aPTT) due to erroneous optical reading of the clotting point in the presence of unfractionated heparin (UFH), and a biphasic waveform. Activated partial thromboplastin time performed on a coagulometer with photo-optical detection yielded an ambiguous clotting curve characterized by an early and steady decrease in light transmittance throughout the whole measuring range, with the clotting point read at 65 seconds. Further investigations included measurement of aPTT by means of a mechanical clot detection method as well as determination of another heparin-sensitive coagulation assay, that is thrombin time (TT), both being unmeasurably prolonged (> 150 seconds). Communication with clinicians revealed that the patient was on continuous UFH therapy and had an underlying sepsis, with highly elevated C-reactive protein (289 mg/L). The aPTT measurements requested at three timepoints later during the same day revealed gradual aPTT shortening and unveiled a peculiar biphasic waveform pattern. In this case, unmeasurably prolonged aPTT due to UFH therapy was masked by a biphasic aPTT curve pattern making only the first slope of the biphasic waveform visible within the measuring range. The early decrease in plasma light transmittance mimicked optical changes related to clot formation, thus causing erroneous optical reading and yielding a falsely shortened aPTT. This case emphasizes that such a pattern should be carefully inspected, especially when a combination of a critically ill condition and UFH therapy is present, in order to prevent erroneous reporting of aPTT and potential adverse effects on patient care.
Highlights
Activated partial thromboplastin time is a widely used coagulation test intended for screening of clotting factor deficiencies within intrinsic and common coagulation pathways, for detecting presence of circulating inhibitors such as lupus anticoagulant, and for therapeutic monitoring of unfractionated heparin (UFH)
We present an unusual case of a falsely shortened Activated partial thromboplastin time (aPTT) result due to erroneous optical reading of the clotting point in the presence of both UFH and a biphasic waveform
Automated coagulation analysers with photo-optical detection measure a change in light transmittance in the reaction mixture during the entire clotting process and yield an appropriate curve
Summary
Activated partial thromboplastin time (aPTT) is a widely used coagulation test intended for screening of clotting factor deficiencies within intrinsic and common coagulation pathways, for detecting presence of circulating inhibitors such as lupus anticoagulant, and for therapeutic monitoring of unfractionated heparin (UFH). ©Copyright by Croatian Society of Medical Biochemistry and Laboratory Medicine We present an unusual case of a falsely shortened aPTT result due to erroneous optical reading of the clotting point in the presence of both UFH and a biphasic waveform. Detailed visual inspection revealed an atypical clotting curve as shown, accompanied by a flag indicating Early reaction error: Slow reaction, which raised a suspicion about a non-specific initial decrease in light transmittance and interference in optical reading Detailed visual inspection revealed an atypical clotting curve as shown in Figure 2A, accompanied by a flag indicating Early reaction error: Slow reaction, which raised a suspicion about a non-specific initial decrease in light transmittance and interference in optical reading
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.