Abstract

MicroRNA164 (miR164) plays a key role in leaf and flower development, lateral root initiation, and stress responses. However, little is known about the regulatory roles of miR164 during seed development, particularly in maize. The aim of this study was to discover the developmental function of miR164 in maize seed. Small RNA sequencing (sRNA-seq) was performed at two key stages. The results indicated that miR164 was down-regulated during maize seed development. In addition, degradome library sequencing and transient expression assays identified the target genes for miR164. Two microRNA (miRNA) pairs, miR164-NAM, ATAF, and CUC32 (NAC32) and miR164-NAC40, were isolated. The developmental function of miR164 was determined by analyzing the differentially expressed genes (DEGs) between the wild-type and miR164 transgenic lines using RNA sequencing (RNA-seq) and by screening the DEGs related to NAC32 and NAC40 via co-expression and transient expression analysis. These results identified two beta-expansin genes, EXPB14 and EXPB15, which were located downstream of the NAC32 and NAC40 genes. This study revealed, for the first time, a miR164-dependent regulatory pathway, miR164-NAC32/NAC40-EXPB14/EXPB15, which participates in maize seed expansion. These findings highlight the significance of miR164 in maize seed development, and can be used to explore the role of miRNA in seed development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.