Abstract

Bott and Taubes constructed knot invariants by integrating differential forms along the fiber of a bundle over the space of knots, generalizing the Gauss linking integral. Their techniques were later used to construct real cohomology classes in spaces of knots and links in higher-dimensional Euclidean spaces. In previous work, we constructed cohomology classes in knot spaces with arbitrary coefficients by integrating via a Pontrjagin--Thom construction. We carry out a similar construction over the space of string links, but with a refinement in which configuration spaces are glued together according to the combinatorics of weight systems. This gluing is somewhat similar to work of Kuperberg and Thurston. We use a formula of Mellor for weight systems of Milnor invariants, and we thus recover the Milnor triple linking number for string links, which is in some sense the simplest interesting example of a class obtained by this gluing refinement of our previous methods. Along the way, we find a description of this triple linking number as a "degree" of a map from the 6-sphere to a quotient of the product of three 2-spheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.