Abstract
Cast austenite stainless steels (CASS) were widely used in the primary circuit piping of pressurized water nuclear reactors (PWRs), for their excellent mechanical behavior, corrosion resistance and good weldability. CASS, however, were known to have a tendency of thermal aging embrittlement after long term service at mid-temperature (about 280—320 ). The microstructures, micro-mechanical properties and tensile fracture behaviors of Z3CN20-09M stainless steels, thermal aged at 400 for 2×10 4 h, were studied in this work. TEM was utilized to observe the microstructure. A nano-indenter was used to investigate the micro-mechanical properties. The tensile tests were completed by an in situ fatigue tester. The tensile surface morphology was observed in SEM and the fracture of thermal aged CASS was examined by an electron probe micro-analyzer (EPMA). The results indicated that the spinodal decomposition and G-phase precipitation distributed in ferrite of the aged CASS. The nano-hardness of ferrite increased and the plastic deformation ability
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.