Abstract

Solid tumors represent the most common type of cancer in humans and are classified into sarcomas, lymphomas, and carcinomas based on the originating cells. Among these, carcinomas, which arise from epithelial and glandular cells lining the body's tissues, are the most prevalent. Around the world, a significant increase in the incidence of solid tumors is observed during recent years. In this context, efforts to discover more effective cancer treatments have led to a deeper understanding of the tumor microenvironment (TME) and its components. Currently, the interactions between cancer cells and elements of the TME are being intensely investigated. Remarkable progress in research is noted, largely owing to the development of advanced in vitro models, such as tumor-on-a-chip models that assist in understanding and ultimately discovering new effective treatments for a specific type of cancer. The purpose of this article is to provide a review of the TME and cancer cell components, along with the advances on tumor-on-a-chip models designed to mimic tumors, offering a perspective on the current state of the art. Recent studies using this kind of microdevices that reproduce the TME have allowed a better understanding of the cancer and its treatments. Nevertheless, current applications of this technology present some limitations that must be overcome to achieve a broad application by researchers looking for a deeper knowledge of cancer and new strategies to improve current therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.