Abstract

On invasion of roots, plant-parasitic nematodes secrete effectors to manipulate the cellular regulation of the host to promote parasitism. The root-knot nematode Meloidogyne graminicola is one of the most damaging nematodes of rice. Here, we identified a novel effector of this nematode, named Mg16820, expressed in the nematode subventral glands. We localized the Mg16820 effector in the apoplast during the migration phase of the second-stage juvenile in rice roots. In addition, during early development of the feeding site, Mg16820 was localized in giant cells, where it accumulated in the cytoplasm and the nucleus. Using transient expression in Nicotiana benthamiana leaves, we demonstrated that Mg16820 directed to the apoplast was able to suppress flg22-induced reactive oxygen species production. In addition, expression of Mg16820 in the cytoplasm resulted in the suppression of the R2/Avr2- and Mi-1.2-induced hypersensitive response. A potential target protein of Mg16820 identified with the yeast two-hybrid system was the dehydration stress-inducible protein 1 (DIP1). Bimolecular fluorescence complementation resulted in a strong signal in the nucleus. DIP1 has been described as an abscisic acid (ABA)-responsive gene and ABA is involved in the biotic and abiotic stress response. Our results demonstrate that Mg16820 is able to act in two cellular compartments as an immune suppressor and targets a protein involved in the stress response, therefore indicating an important role for this effector in parasitism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.