Abstract
NLRP3 inflammasome is a multiprotein platform for the activation of caspase-1. Despite the increasing number of reports linking NLRP3 inflammasome to a variety of diseases, the mechanism behind the NLRP3 activation remains elusive, especially in terms of the early stages which are critical to the NLRP3 inflammasome assembly. In the present study we aimed to determine the minimal oligomerization state required for the NLRP3 inflammasome activation. For this purpose, NLRP3 pyrin domain (NLRP3PYD) was fused to various dimerization and trimerization domains. The constructs were expressed under the inducible promoter in mouse macrophages lacking endogenous NLRP3. Dimerization of the NLRP3PYD either in parallel or in antiparallel orientation was insufficient for the inflammasome activation. Trimerization of the NLRP3PYD with the foldon domain, however, induced pyroptosis and robust IL-1β maturation, which was caspase-1 dependent. Interestingly, foldon-induced constitutive activation is resistant to inhibition with NLRP3-specific inhibitor MCC950 and does not lead to ASC speck formation. Although we cannot exclude that wild-type NLRP3 forms higher oligomer species similar to NLRP1 or NLRC4, our results clearly demonstrate that efficient IL-1β response can be achieved by the induced trimerization of the NLRP3PYD domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.