Abstract

The global effort to mitigate the impact of environmental pollution has led to the use of various types of metallic iron (Fe(0)) in the remediation of soil and groundwater as well as in the treatment of industrial and municipal effluents. During the past three decades, hundreds of scientific publications have controversially discussed the mechanism of contaminant removal in Fe(0)/H2O systems, with the large majority considering Fe(0) to be oxidized by contaminants of concern. This view assumes that contaminant reduction is the cathodic reaction occurring simultaneously with Fe0 oxidative dissolution (anodic reaction). This view contradicts the century-old theory of the electrochemical nature of aqueous iron corrosion and hinders progress in designing efficient and sustainable remediation Fe(0)/H2O systems. The aim of the present communication is to demonstrate the fallacy of the current prevailing view based on articles published before 1910. It is shown that properly reviewing the literature would have avoided the mistake. Going back to the roots is recommended as the way forward and should be considered first while designing laboratory experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.