Abstract

Preferential oxidation (PROX) reaction of CO in H2 catalyzed by a new catalyst of FeO x /Pt/TiO2 (Fe: Pt: TiO2 = 100: 1: 100) was studied by dynamic in-situ DRIFT-IR spectroscopy. The oxidation of CO is markedly enhanced by H2 and H2O, and the enhancement by H2/D2 and H2O/D2O takes a common hydrogen isotope. Dynamics of DRIFT-IR spectroscopy suggests that the oxidation of CO with O2 in the absence of H2 proceeds via bicarbonate intermediate. In contrast, rapid oxidation of CO in the presence of H2 proceeds via HCOO intermediate and the subsequent oxidation of HCOO by the reaction with OH, that is, CO + OH→ HCOO and HCOO + OH → CO2 + H2O. The latter reaction is a rate determining step being responsible for a common hydrogen isotope effect by H2/D2 and H2O/D2O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.